Project 1

Finite Difference Differentiation Matrices and 1D Boundary Value Problems. Deadline and submission information: please log in to mycourses. All problems are of equal weights.

Name : \qquad

1. In class, you have practiced to compute 3-point stencil finite difference weights to form first derivative differentiation matrix \mathbf{D}.
(a) By using equally-spaced points on the interval $[-1,1]$, redo what we have done in class (you may choose Lagrange or Taylor series technique) for 5 -point stencil finite difference weights to form the matrix D. You can Computer Algebra System software such as MATLAB-Mupad, Mathematica, or Maple.
(b) By using $u(x)=e^{-x^{2}}$ with $u^{\prime}(x)=-2 x e^{-x^{2}}$ as a test case, use MATLAB to test the algebraic error convergence trend (error $\approx h^{p}$) by plotting h vs $\|.\|_{\infty}$ in loglog style plot. What is the order p ?
(c) Redo part (c) for the periodic case with $u(x)=\sin (\pi x)$ with $u^{\prime}(x)=\pi \cos (\pi x)$ as a test case.
2. In his paper (published in 1998), Fornberg presents a one-line Mathematica formula for finding finite difference weights:

CoefficientList[Normal[Series [x^s Log[x]^m, \{x, 1, n\}]/h^m], x]
where m is the order of the derivative, n is the number of grid intervals enclosed in the stencil, and s is the number of grid intervals between the point at which the derivative is approximated and the leftmost edge of the stencil. As an example, for 3 point stencils,

```
m = 1;
n = 2;
s = 1;
CoefficientList[Normal[Series[x^s Log[x]^m, {x, 1, n}]/h^m], x]
will result in weights {-\frac{1}{2h},0,\frac{1}{2h}}.Additionally,
m = 1;
n = 2;
s = 0;
CoefficientList[Normal[Series[x^s Log[x]^m, {x, 1, n}]/h^m], x]
```

will result in "left one sided" weights $\left\{-\frac{3}{2 h}, \frac{2}{h},-\frac{1}{2 h}\right\}$.
(a) Use the Mathematica code above to check your answers for the 5 point stencil weights in problem 1 (a).
(b) Use the Mathematica code to find 7 point stencil weights and then form the differentiation matrix \mathbf{D} with MATLAB and redo part 1 (b) and 1 (c).
3. Write a MATLAB function
function [x, h, D] = FDDiffMat(domain, n, stencilsize, option)
that accepts domain $[a, b]$, number of equally-spaced points n, stencil size, and option as inputs and spits out a column vector x of size $n \times 1$, which is the discrete representation of [a, b], spacing size h, and differentiation matrix \mathbf{D} of size $n \times n \times 2$. Users can choose stencil sizes $2,3,5,7$ and an option either 'non-periodic' or 'periodic'.

For example, if a user calls
[x, h, D] = FDDiffMat([-1 1], 20, 5, 'non-periodic')
he/she will obtain x with entries $x_{j}=-1+j h, j=0, \ldots, n-1, h=2 /(n-1)$, and the non-periodic 5-point stencil case differentiation matrix \mathbf{D}, where $\mathbf{D}(:,:, 1)$ stores the first derivative differentiation matrix and $\mathbf{D}(:,:, 2)$ stores the second derivative differentiation matrix.
4. By using 3-point stencil differentiation matrices from number 3, solve the boundary value problem (BVP)

$$
u^{\prime \prime}+u^{\prime}+2 u=x, \quad x \in(-1,1)
$$

(a) with boundary conditions $u(-1)=u(1)=0$.
(b) with boundary conditions $u(-1)=u^{\prime}(1)=0$.

Plot the solution on $[-1,1]$. You are free to choose the number of n. For part (a) and (b), find the exact solutions with Mathematica or MATLAB or wolframalpha, and check the error convergence (i.e. h vs $\|.\|_{\infty}$ in $\log \log$ scale as usual).
5. By setting $u^{\prime}(x)=v(x)$, redo problem 4 (b), by solving the system

$$
\begin{aligned}
v^{\prime}+v+2 u & =x \\
u^{\prime}-v & =0
\end{aligned}
$$

with boundary conditions $u(-1)=v(1)=0$. The system will be twice as large compared to 4 (b). However the solution u computed this way should give you the same solution as in 4 (b).
6. By using 5-point stencil differentiation matrices from number 3, solve the Airy equation boundary value problem

$$
u^{\prime \prime}-x u=0, \quad x \in(-30,30)
$$

with boundary conditions $u(-30)=1$ and $u(30)=0$. Plot the solution on $[-30,30]$. You are free to choose the number of n.
7. By using 3-point stencil differentiation matrices, solve the Poisson equation

$$
\begin{aligned}
-u^{\prime \prime} & =e^{-40 x^{2}}, \quad x \in(-1,1), \\
u(-1) & =0, u(1)=0
\end{aligned}
$$

Since the forcing function $e^{-40 x^{2}}$ on the right hand side shows its peak between $x=-\frac{1}{2}$ and $x=\frac{1}{2}$, you can try to discretize the interval $[-1,1]$ with non-uniform nodes distributions. For example, the subinterval $\left[-\frac{1}{2}, \frac{1}{2}\right]$ can have spacing h twice smaller than other parts of the domain. Plot the solution on $[-1,1]$.
8. Solve 1D nonlinear pendulum equation

$$
\frac{d^{2} u}{d s^{2}}=-\sin (u)
$$

on $s \in[0,6]$ with boundary conditions $u(0)=-\pi / 2$ and $u(6)=\pi / 2$. You are free to try with different stencil sizes and the number of n. Use iteration technique to solve the nonlinear system. If we define a variable "height" $H=-\cos (u)$, plot H vs s.

