Name	_ Student ID #		
Instructor	Lab Period	Date Due	

Lab 4 The Limit of a Function

Objectives

- 1. To learn how to numerically estimate limits.
- 2. To develop an intuitive understanding of the limit of a function.
- 3. To become familiar with left-hand and right-hand limits.

Exploration 1 Estimating Limits

As the values of x become close to 1 but not equal to 1, what happens to the values of $f(x) = 3 - x^2$? To answer this question, let's do the following:

- Plot $f(x) = 3 x^2$ on the interval 0 x = 2.
- Click the **Rectangular Tracker Tool** to make it active.
- Place the cursor on the upward pointing arrow \triangle at the *left end* of the *x*-axis.
- Press and hold down the mouse button and drag the arrow toward 1 along the *x*-axis. Note that you can read the values of the coordinates of a point on the curve with the tracker in the Graph window or you can read the values in the bottom two cells of the Domain & Range window. The values in the Domain & Range window are displayed with additional significant digits.

1.	What happens to the values of $f(x)$ as x approaches 1 from the left?				
	 Move the cursor to the <i>right end</i> of the <i>x</i>-axis. Press and hold down the mouse button and drag to the left toward 1 along the <i>x</i>-axis. 				
2.	What happens to the values of $f(x)$ as x approaches 1 from the right?				

The Rectangular Tracker Tool provides informal evidence that the values of f(x) approach 2 as x approaches 1. But in formal quantitative terms, can we make f(x) as close to 2 as we like by taking x sufficiently close to 1? For example, suppose we want f(x) to be within 0.0001 units of 2, that is, suppose we want 2 - 0.0001 < f(x) < 2 + 0.0001 (or 1.9999 < f(x) < 2.0001). How close does x have to be to 1 for this inequality to be true? To answer this question, let's generate a table of values for x and f(x).

- Select the **Accuracy** item from the **Options** menu and enter **15** in the **upper cell**.
- Click the **OK** button or press the **Return** key. The results of all calculations will now be displayed with fifteen significant digits.
- Select New Data Table Keyboard Entry from the Work menu.
- Double-click the **Resize** command in the data table command list. Enter **9** in the command area and press the **Enter** key. This places nine empty rows in the data table.
- To fill the x-column with values of x that get closer to 1 but are less than 1; select the x-column, double-click the Fill command, enter the fill function x(i) = 1 10^(-i), and press the Enter key. Note that the variable i represents the row number in the data table.
- To generate the $f(x) = 3 x^2$ values; select the **x-column**, double-click the **Generate** command, enter the generating function $\mathbf{y}(\mathbf{x}) = 3 \mathbf{x}^2$, and press the **Enter** key. The y-column is filled with the values of f(x) corresponding to the x values in the first column.

We say that a is within d units of L if a's distance from L is less than d units as is shown in the open interval diagrams below.

$$L-d$$
 a L $L+d$ $L-d$ L a $L+d$

This condition is expressed formally by the inequality

$$L - d < a < L + d$$

which can be simplified to

$$|a-L| < d$$
.

Next, let's see what happens when we approach 1 from the right.

• Fill the x-column using the fill function $\mathbf{x}(\mathbf{i}) = \mathbf{1} + \mathbf{10}^{\wedge}(-\mathbf{i})$ and generate the y-column for these x values.

- 4. Is there an entry in the *x*-column for which f(x) is within 0.0001 of 2 for this entry and for *all smaller* values in the *x*-column? If so, what is it?
- 5. Based on your answers to questions 3 and 4 above, is there a number δ such that if x is within δ of 1 (that is, if $1 \delta < x < 1 + \delta$), then f(x) is within 0.0001 of 2 (that is,

$$2 - 0.0001 < f(x) < 2 + 0.0001$$
? If so, what is ?

Let's represent the number 0.0001 by the symbol ε , that is, let $\varepsilon = 0.0001$. The exploration above shows that if $1 - \delta < x < 1 + \delta$, then $2 - \varepsilon < f(x) < 2 + \varepsilon$. If we can find a for any ε no matter how small, then we will say that the limit of $f(x) = 3 - x^2$ as x approaches 1 is equal to 2 and we will write

$$\lim_{x \to 1} (3 - x^2) = 2.$$

Exploration 2 The Limit of a Rational Function

Using the procedure given in exploration 1 (use the fill functions $1 - 10^{(-i)}$) and $1 + 10^{(-i)}$), let's estimate the value of

$$\lim_{x \to 1} \frac{\left(x^4 - x^3 + x^2 - 1\right)}{\left(x^3 - 2x^2 + 1\right)}.$$

1. Can you evaluate $\frac{(x^4 - x^3 + x^2 - 1)}{(x^3 - 2x^2 + 1)}$ at x = 1?..... If not, why not?.....

.....

2. What happens to the values of $\frac{\left(x^4 - x^3 + x^2 - 1\right)}{\left(x^3 - 2x^2 + 1\right)}$ as x gets close to 1 from the left?......

.....

3. What happens to the values of $\frac{\left(x^4 - x^3 + x^2 - 1\right)}{\left(x^3 - 2x^2 + 1\right)}$ as x gets close to 1 from the right?......

.....

4. What is your estimate for the value of the limit (if it exists)?.....

Exploration 3 The Limit of an Algebraic Function

Using the procedure given in exploration 1 (use the fill functions $8 - 10^{(-i)}$) and $8 + 10^{(-i)}$), let's estimate the value of

$$\lim_{x\to 8}\frac{\left(x^{\gamma_3}-2\right)}{\left(x-8\right)}.$$

In TEMATH, x^{ν_3} is entered as **rad(3, x)**.

.....

2. What happens to the values of $\frac{(x^{1/3}-2)}{(x-8)}$ as x gets close to 8 from the left?.....

.....

3. What happens to the values of $\frac{(x^{1/3}-2)}{(x-8)}$ as x gets close to 8 from the right?.....

4. What is your estimate for the value of the limit (if it exists)?.....

Exploration 4 The Limit of a Special Transcendental Function

Using the procedure given in exploration 1 (use the fill functions $-10^{(-i)}$), let's estimate the value of

$$L = \lim_{x \to 0} \left(1 + x\right)^{1/x}.$$

Note that $(1+x)^{Vx}$ is entered as $(1+x)^{(1/x)}$. It is known that this limit exists and that L is a number between 2 and 3.

- 1. Can you evaluate $(1+x)^{y_x}$ at x=0?...... If not, why not?......
- 2. What happens to the values of $(1+x)^{Vx}$ as x gets close to 0 from the left?.....

		••••				
4.	What is your	best	estimate for L	(give an <u>eight</u> dig	git approximation	1)?
Ex	ploration	5	Computer	s Only Simul	ate Arithmet	ic

What happens to the values of $(1+x)^{yx}$ as x gets close to 0 from the right?.....

A computer only *simulates* real arithmetic and it is very easy to exceed the limitations of this simulation. Thus, you must always decide for yourself if results calculated by a computer are correct. To see a simple example of this, do the following:

- Use the fill function $x(i) = 1024^{(-i)}$ to fill the x-column of a 9-row data table.
- Select the x-column of the data table and double-click the **Generate** command in the data table's command list. Enter the expression (x + 1) 1 as the generating function exactly as it is written. Don't simplify this expression!
- Press the **Return** or **Enter** key.

1.	What are the last five y-column entries generated by $(x + 1) - 1$?
2.	What are the <i>correct</i> values for the last five <i>y</i> -column entries?

With the above in mind, try to estimate the right-hand limit below using the fill function $x(i) = 1024^{\circ}(-i)$.

$$\lim_{x \to 0^{+}} \frac{x}{((x+1)-1)}$$

For your generating function, you should enter the rational expression x/((x+1) - 1) exactly as it is written. Don't simplify this expression!

3.	Deced on the wealthouse at the data table what hampens to the values of	\boldsymbol{x}
	Based on the y-column entries in the data table, what happens to the values of	
	as x approaches zero from the right?	
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
4.	What is the <i>correct</i> value for this right-hand limit?	
5.	Why did the computer produce the incorrect results given in question 3.?	
		• • • • • • • • • • • • • • • • • • • •