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With the increasing availability of easy to use interactive differential equation software,
we convinced ourselves to completely redesign the way we teach differential equations.
Rather than have our students passively study a cookbook collection of special techniques
for solving a few types of differential equations, we now have them actively involved in
designing models and testing them with real-world data.  Real-world data provides an ex-
tremely rich environment for developing, learning, and applying differential equations.
Government sources, laboratory experiments, and research studies present a wealth of
data that can be modeled by differential equations.  Additionally, with the availability of
sensors that attach to a computer or a graphing calculator, it has become an easy task to
gather data from many different types of physical experiments.  Thus, it has become
common practice for our students to not only develop and test their own models, but, to
test the validity and accuracy of the many differential equation models that are presented
in a standard first year course.  By seeing for themselves how well differential equations
model physical phenomenon, they build up confidence in using differential equations in
their studies, research, and future careers.  In our courses, we emphasize the fact that not
only do we want a model that fits the data well, but we want one that also makes sense
from a theoretical and realistic point of view.  Many models fit data well over a short
time period (the data looks linear), but over longer time periods and for purposes of
making projections into the future, one model may be much more appropriate than the
others.  We now present a few examples that use differential equations to model real-
world data.

The Simple Harmonic Oscillator — Using Hooke's Law

With springs, masses, and supports borrowed from the
Physics Department, we were able to set-up an harmonic
oscillator experiment.  We placed a motion sensor under
an oscillating spring, attached the motion sensor to a
Texas Instruments CBL©, and gathered the data from
the CBL with a TI-83 graphing calculator.  Using the
Texas Instruments Graph-Link software package, we
downloaded the data from the TI-83 to a Macintosh
computer.  Next, we read the data into the TEMATH

software package.  Once we had access to the data, we found the central divided
differences of the data and then found the central divided differences of the central
divided differences.  This gave us an estimate for the second derivative.  We then plotted
the second order central divided differences versus the y-values and used TEMATH's
Least Squares fitting tool to fit these divided differences.  Using this fit, we then obtained
an estimate for the spring constant.  The second order differential equation model that we
obtained from the data was
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The experimental data and the solution to the differential equation are plotted in Figure 1.
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Figure 1  Spring-Mass Data and Fit Figure 2  Damped Spring-Mass

As a second experiment, we attached the mass to a large paper plate to try to induce some
damping.  The data and the second order differential equation model that we obtained are
shown in Figure 2.  Note the excellent agreement between the data and the theory.

Glucose Tolerance Test

We solicited the assistance of our colleagues in the Medical Laboratory Sciences
Department to obtain data for a Glucose Tolerance Test.  This test is given to patients to
determine how well their bodies produce insulin when needed to reduce glucose levels in
their blood.  We obtained data for a normal patient, a Type I diabetic (insulin controlled),
and a Type II diabetic (diet controlled).  A typical glucose tolerance test is described
below:

For two days prior to the test, the patient is told to eat a high carbohydrate diet in
order to have maximum synthesis of insulin.  Otherwise, the numbers may reflect a
sluggish pancreas rather than an actual disease state.  Then the patient must fast for
twelve hours prior to the test.  On the morning of the test, a blood specimen is
drawn while the patient is still fasting — this specimen provides a baseline glucose
level.  Next, the patient is given a drink that contains 75 grams of glucose in ap-
proximately 250 mL of water.  The patient must drink the glucose solution within
five minutes.  The remainder of the specimens are drawn at the time intervals 1/2, 1,
2, 3, and 4 hours later.

It should be noted that glucose is absorbed quickly into the blood stream and that insulin
production is approximately 30-45 minutes “behind” the glucose values and it should be
produced in proportion to the glucose level in the blood stream.

A reasonable differential equation model for the amount of glucose in the blood stream is

dg

dt
= GlucoseAbsorptionRate(t) − k(g − BaseLineValue)
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where g(t) = amount of glucose in the blood stream at time t.  A possible model for the
rate of glucose absorption by the blood stream is the delayed surge function

GlucoseAbsorptionRate(t) =
0 0 ≤ t ≤

a(t − )e−b (t − ) t >
 
 
 

A graph of the delayed surge function used to model the rate of glucose absorption is
shown in Figure 3.  The area under this curve is equal to the 75 grams of glucose con-
tained in the glucose drink and this determines the value of the parameter a in the model.
The delay  was set to 0.4 hours — this takes into account the time to drink the glucose
and the time for the stomach to begin the absorption process.  Glucose data obtained for a
normal patient is presented in Table 1.

t (Hours) 0 0.5 1 2 3 4
Glucose Level (mg/dL) 80 120 205 92 75 82

Table 1  Glucose Tolerance Test Data for a Normal Patient

The delayed surge function that we used in the differential equation to fit the data was

GlucoseAbsorptionRate(t) =
0 0 ≤ t ≤ 0.4

675000(t − 0.4)e−3(t − 0.4) t > 0.4
 
 
 

Figure 4 shows how well we were able to model the glucose test results.
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Figure 3  Glucose Absorption Figure 4  Fitting Glucose Data

Torricelli's Law

The following experiment can be used to test Torricelli's law:

Drill a small hole into the side (near the bottom) of a two liter clear plastic bottle.
Attach a ruler to the side of the bottle with zero marking the position of the hole.
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Fill the bottle with water while covering the hole with a finger.  Remove the finger
and record the time and height of the water as the water is drained from the bottle.
The height h(t)  of the water at time t is governed by Torricelli's law which states
that dh / dt = a h .

We performed Torricelli's experiment with an 1/8 inch hole in the
two liter bottle.  To estimate the value of the parameter a in
Torricelli's law, we calculated the central differences of the data
obtained from the experiment, plotted the central differences
versus the measured heights of the water, and used TEMATH's
Linear Least Square's Tool to find the linear fit for dh / dt = a h
(see Figure 5).  Once the value of a was estimated, we plotted the
numerical solution of Torricelli's differential equation along with
the data.  Notice how well the solution models the experimental
data as is shown in Figure 6.
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Figure 5  Fitting the Central Differences Figure 6  Modeling Torricelli's Law

The Standard Series RC Circuit Experiment

In the standard series RC circuit experiment,
the capacitor is allowed to charge by closing
the switch.  In theory, the differential equa-
tion that models the behavior of the voltage
after the switch has been closed is
dv

dt
=

1

RC
(vsource − v)  where R is the resis-

tance in ohms and C is the capacitance in
farads and v source  is the source voltage.  We
used the CBL with a voltage probe to test
this model with R = 50.2k Ω± 5%  and
C = 470 f =  470 ⋅10−6 f ± 20%.  A plot of
the data we gathered and imported into
TEMATH is shown in Figure 7.
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Figure 7  Charging Capacitor
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Unexpectedly, the measured equilibrium voltage was ve = 8.63620  instead of the source
voltage (= 9.035 volts).  We used TEMATH to calculate the central divided differences
as an approximation to dv /dt .  A plot of these values versus v together with a fit of this
data by a least squares line are shown in Figure 8.
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Figure 8  Least Squares Fit of (v, v')-data Figure 9  Solution and Data

Based on this fit, we decided to change the model to 
dv

dt
= 0.383693 − 0.0444966v .  We

then used TEMATH to generate a numerical solution to this differential equation using
v(0) = 0.00760000 as the initial condition.  A plot of this solution which appears to fit the
data very well is shown in Figure 9.  We concluded that the CBL with the voltage probe
attached has an internal resistance that prevents the capacitor from charging to the source
voltage.  We verified this by connecting a voltmeter across the capacitor and simultane-
ously disconnecting the voltage probe.  The capacitor then resumed charging and contin-
ued to charge until the source voltage was reached as expected.  If the circuit is viewed as
two resisters in series, the internal resistance of the CBL-voltage probe unit can be found

using the formula RCBL =
v e

vsource − ve

⋅ R  =
8.63620

9.035 − 8.63620
⋅50200 ≈ 106 Ω.  Finally, the

experimentally determined value of 
1

RC
= 0.0444966  is in good agreement with the theo-

retical value of 
1

RC
=  

1

470 ⋅10
−6

⋅50200
= 0.0423837 .
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