\qquad Worksheet 0: Common Algebra Errors V2

This worksheet is intended to help with your ability to correct common algebra errors! Although, I will record your score, I will not include your score in your class average. Instead, your score on this worksheet will help me (and you) determine if you need to seek tutoring from the Math-Business Tutoring Center located in Room 001 LARTS (basement floor).

For each case, present a clear justification as to why the expressions on each side of the equals sign are unequal.
a) $(2 \mathrm{pt}) \quad \sqrt{x^{2}+9} \neq x+3$, Why?

Solution:

Cause: The mistaken belief that square root function distributes over addition. It doesn't! Here is why:
If $\sqrt{x^{2}+9}=x+3$ is true, then it must be true for all values of x ! But
Method 1: The statement is false when $x=-3: \sqrt{(-3)^{2}+9}=\sqrt{18} \neq 0=-3+3$.
Method 2: $\sqrt{x^{2}+9}=x+3 \Rightarrow x^{2}+9=(x+3)^{2}=x^{2}+6 x+9 \Rightarrow x=0$ is the only value for which the statement is true!
b) $(2 \mathrm{pt}) \quad \frac{x^{2}+1}{x} \neq x+1$, Why?

Solution:

Cause: The mistaken belief that x in the denominator can be divided out of x^{2} in the numerator. It can't! Here's why:

If $\frac{x^{2}+1}{x}=x+1$ is true, then it must be true for all values of $x!$ But
Method 1: The statement is false when $x=0: \frac{0^{2}+1}{0}=\frac{1}{0}=$ undefined $\neq 1=0+1$.
Method 2: $\frac{x^{2}+1}{x}=x+1 \Rightarrow x^{2}+1=x^{2}+x \Rightarrow x=1$ is the only value for which the statement is true!
Method 3: $\frac{x^{2}+1}{x}=\frac{x^{2}}{x}+\frac{1}{x}=x+\frac{1}{x} \neq x+1$ since $\frac{1}{x} \neq 1$ by correctly using the rule for adding rational expressions.
c) $(2 \mathrm{pt}) \frac{n}{n+1} \neq 1+n$, Why?

Solution:

Cause: The mistaken belief that the rational expression $\frac{n}{n+1}$ can be split into the $\operatorname{sum} \frac{n}{n}+\frac{n}{1}=1+n$. It can't! Here's why:
\qquad Worksheet 0: Common Algebra Errors V2

If $\frac{n}{n+1}=1+n$ is true, then it must be true for all values of $n!$ But
Method 1: The statement is false when $n=0: \frac{0}{0+1}=0 \neq 1=0+1$.
Method 2: $\frac{n}{n+1}=n+1 \Rightarrow n=(n+1)^{2} \Rightarrow n^{2}+n+1=0 \Rightarrow(n+1 / 2)^{2}+3 / 4=0$ which can't be true for any real number; that is, the statement is only true when $n=(-1+\sqrt{3} i) / 2$ or $n=(-1-\sqrt{3} i) / 2$ (complex numbers).
d) $(2 \mathrm{pt}) \quad 1-\frac{x-1}{2} \neq \frac{1-x}{2}$, Why?

Solution:

Cause: The failure to distribute the minus sign over a difference of terms correctly. Here's how to check:
If $1-\frac{x-1}{2}=\frac{1-x}{2}$ is true, then it must be true for all values of x ! But
Method 1: The statement is false when $x=0: 1-\frac{0-1}{2}=1+\frac{1}{2}=\frac{3}{2} \neq \frac{1}{2}=\frac{1-0}{2}$.
Method 2: $1-\frac{(x-1)}{2}=\frac{2+(-1)(x-1)}{2}=\frac{2-x+1}{2}=\frac{3-x}{2}=\frac{3}{2}-\frac{x}{2}$ but $\frac{1-x}{2}=\frac{1}{2}-\frac{x}{2}$ by correctly applying rules for combining rational expressions.
e) $(2 \mathrm{pt}) \quad-x^{2} \neq(-x)^{2}$, Why?

Solution:

Cause: An order of operations error!
The exponentiation operator is evaluated before the subtraction operator; thus,

$$
-x^{2}=-\left(x^{2}\right) \leq 0
$$

But

$$
(-x)^{2}=x^{2} \geq 0
$$

Therefore, $-x^{2}=-\left(x^{2}\right) \neq(-x)^{2}=x^{2}$ unless $x=0$.
f) $(2 \mathrm{pt}) \quad x^{2}=1 \nRightarrow x=1$, Why?

Solution:

Cause: The failure to recognize $x^{2}=1$ to be a quadratic equation. Here is how to treat $x^{2}=1$ correctly!
\qquad Worksheet 0: Common Algebra Errors V2

Method 1: Observe that $x^{2}=1 \Leftrightarrow x^{2}-1=0 \Leftrightarrow(x+1)(x-1)=0$ which has both $x=-1$ and $x=1$ as solutions! Thus, $x^{2}=1 \nRightarrow x=1$ since x may equal -1 instead of 1 . The correct statement is

$$
x^{2}=1 \Rightarrow x=1 \text { or } x=-1
$$

Method 2: Plot both $y=x^{2}$ and $y=1$ on the same graph: The graph shows that $x^{2}=1$ has both $x=-1$ and $x=1$ as solutions
g) (2 pt) $\quad(4 x-1)^{2} \neq 16 x^{2}+1$, Why?

Solution:

Cause: The mistaken belief that exponentiation distributes over addition. It doesn't! Here is why:
If $(4 x-1)^{2}=16 x^{2}+1$ is true, then it must be true for all values of $x!$ But
Method 1: The statement is false when $x=1:(4 \cdot 1-1)^{2}=9 \neq 17=16(1)^{2}+1$.
Method 2: If $(4 x-1)^{2}=16 x^{2}+1$ then $16 x^{2}-8 x+1=16 x^{2}+1 \Longrightarrow x=0$ is the only value for which the statement is true!
h) $(2 \mathrm{pt}), 3 \cdot k^{4} \neq(3 k)^{4}$, Why?

Solution:

Cause: An order of operations error! Exponentiation is evaluated before multiplication! Here's why the evaluation order of exponentiation and multiplication matters:

If the statement $3 \cdot k^{4}=(3 k)^{4}$ is true, it must be true for all values of k ! But
Method 1: The statement is false when $k=1: 3 \cdot(1)^{4}=3 \neq 81=(3 \cdot 1)^{4}$.
Method 2: $3 \cdot k^{4}=(3 k)^{4} \Rightarrow 3 \cdot k \cdot k \cdot k \cdot k=3 k \cdot 3 k \cdot 3 k \cdot 3 k \quad \Rightarrow \quad 3 \cdot k \cdot k \cdot k \cdot k=81 \cdot k \cdot k \cdot k \cdot k$

$$
\Rightarrow \quad 0=78 \cdot k \cdot k \cdot k \cdot k \quad \Rightarrow \quad k=0
$$

is the only value for which the statement is true.
i) $(2 \mathrm{pt}) \quad n^{2} \geq 4 \nRightarrow n \geq 2$, Why?

Solution:

Cause: The failure to recognize $n^{2} \geq 4$ to be a quadratic inequality,. Here is how to treat $n^{2} \geq 4$ correctly!
Method 1: Observe that $n^{2} \geq 4 \Leftrightarrow n^{2}-4 \geq 0 \Leftrightarrow(n+2)(n-2) \geq 0$.

But this can only be true when either

$$
\text { (1) } n+2 \geq 0 \text { and } n-2 \geq 0 \quad \text { or } \quad \text { (2) } n+2 \leq 0 \text { and } n-2 \leq 0 \text {. }
$$

Now, (1) implies $n \geq-2$ and $n \geq 2$; hence, $n \geq 2$. But (2) implies $n \leq-2$ and $n \leq 2$; thus, $n \leq-2$. Therefore, the correct statement is

$$
n^{2} \geq 4 \Rightarrow n \leq-2 \text { or } n \geq 2 .
$$

Method 2: Plot both $y=n^{2}$ and $y=4$ on the same graph: The graph shows that $n^{2} \geq 4$ is true when either $n \leq-2$ or $n \geq 2$ as solutions!

j) $(2 \mathrm{pt}) \quad x>0 \nRightarrow x^{2}>x$, Why?

Solution:

Cause: Using only positive integers (or real numbers ≥ 1) to test conjectures! Here's how to show

$$
x>0 \nRightarrow x^{2}>x .
$$

Method 1: If $x=1 / 2$ then $x^{2}=1 / 4<1 / 2=x$. So it is possible for $x^{2}<x$ to be true with $x>0$. Therefore, $x>0$ doesn't imply that $x^{2}>x$.
Method 2: Assume both $x>0$ and $x^{2}>x$. Then both sides of the inequality $x^{2}>x$ can be divided by x without changing the direction of the inequality! Thus, $x>1$. Therefore the correct statement is

$$
x>1 \Rightarrow x^{2}>x
$$

k) (2 pt) $\sqrt{x^{2}} \neq x$ (there was a typo in the original version of the worksheet) Why?

Solution:

Cause: Forgetting that x can have a negative value! Here is why this causes the error!

If $\sqrt{x^{2}}=x$ is true, it must be true for all values of $x!$ But
Method 1: The statement is false when $x=-1: \sqrt{(-1)^{2}}=\sqrt{1}=1 \neq-1$.
Method 2: Notice that $\sqrt{x^{2}}=|x| \geq 0$; thus, if $x<0, \sqrt{x^{2}} \neq x$. The correct statement is $\sqrt{x^{2}}=\left\{\begin{array}{cl}x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{array}\right.$

1) $(2 \mathrm{pt}) \quad \frac{0}{10} \neq$ undefined, Why?

Solution:

Cause: Mixing up the expressions $\frac{0}{10}$ and $\frac{10}{0}$.

Observe that $\frac{0}{10}=0$ since $0=0 \cdot 10$. The correct statement is

$$
\frac{10}{0}=\text { undefined }
$$

since division is equivalent repeated subtraction and repeatedly subtracting 0 from 10 will never make 10 smaller!

