1. Modus Ponens	2. Modus Tollens	3. Generalizations	
		a) b)	
$p \rightarrow q$	$p \rightarrow q$	p q	
р	$\sim q$		
$\therefore q$	$\therefore \sim p$	$\therefore p \lor q \qquad \therefore p \lor q$	
	$\cdots P$		
4. Specialization	5. Conjunction	6. Elimination	
a) b)		a) b)	
$p \land q$ $p \land q$	р	$p \lor q$ $p \lor q$	
p q	q	$\sim q \sim p$	
$\therefore q \qquad \therefore p$	$\therefore p \land q$	$\therefore p$ $\therefore q$	
7. Transitivity	8. Proof by Division into Cases $p \lor q$	9. Contradiction Rule	
$p \rightarrow q$	$p \rightarrow r$	$\sim p \rightarrow c$	
$q \rightarrow r$	-	$\therefore p$	
$\therefore p \rightarrow r$	$q \rightarrow r$	••• <i>P</i>	
*	:. <i>r</i>		

Example: Given the following, where are my glasses?

a) If I was reading the newspaper in the kitchen, then my glasses are on the kitchen table.

b) If my glasses are on the kitchen table, then I saw then at breakfast.

c) I did not see my glasses at breakfast.

d) I was reading the newspaper in the living room or I was reading the newspaper in the kitchen.

e) If I was reading the newspaper in the living room, then my glasses are on the coffee table.

Let RK = "I was reading the newspaper in the kitchen."

GK = "My glasses are on the kitchen table."

SB = "I saw my glasses at breakfast."

RL = "I was reading the newspaper in the living room."

GC = "My glasses are on the coffee table.

then the natural language statements above can be expressed as the following formal statements:

a') $RK \rightarrow GK$ b') $GK \rightarrow SB$ c') ~ SB d') $RK \lor RL$ e') $RL \rightarrow GC$

Now the following argument shows that my glasses are on the coffee table:

Step 1: Transitivity	Step 2: Modus Tollens	Step 3: Elimination	Step 4: Modus Ponens
$RK \rightarrow GK$ (<i>a</i> ')	$RK \rightarrow SB$ (1)	$RK \lor RL$ (d')	$RL \rightarrow GC$ (e')
$GK \rightarrow SB$ (b')	$\sim SB$ (c')	$\sim RK$ (2)	RL (3)
$\therefore RK \rightarrow SB$	$\therefore \sim RK$	$\therefore RL$	$\therefore GC$

Thus, by Step 4 my glasses are on the coffee table!