This Worksheet shows you several ways to start using Enthought's distribution of Python!

Start the **Terminal** application by

- Selecting the **Utilities** item from the **Go** menu located at the top of the screen (it may be in the Dock).
- The Utilities folder will be displayed in a window.
- Double-click the **Terminal** application's **icon** located in the **Utilities** subfolder of the Applications folder.
- The **Terminal** application will start and its window will open

Start Python's basic integrated development environment (IDE) application called idle by

- ¹ Typing **idle &** and the pressing the return key.
- After a few minutes, idle will start up and open one or two windows and the menu bar

Ś	Python	File	Edit	Format	Run	Window	Help	
	00							Untitled

The menu's are used to control idle. Also, a message of the form "[k] process ID"

[1] 786

will be displayed in the Terminal's window. The integer **786** identifies the processing thread running **idle**. **Note**: The ampersand '**&**' tells the operating system to run idle as a separate process.

In order to execute Python code, the code must be saved in a file. To do this do,

Select New Window from idle's File menu.

🗯 Python	File Edit	Shell	Debug	Window	Help			
	New Wind Open	ow 📐	^ N ^ O	Python Shell				
Python 2. [GCC 4.0. Type "cop	Open Moo Recent Fil Class Brow Path Brow	dule es wser ser	1	-bit) (default, Apr 12 2012, 11:28:34) d 5493)] on darwin or "license()" for more information.	.)			
	Close Save Save As Save Copy	/ As	てF4 ^S ^ひS てひS					
	Print Window ^ P							

A new idle *program* window will open with the title Untitled.

Select the **Save As...** from **idle**'s the **File** menu.

🛒 Python	File Edit Forma	t Run	Window Help
Python 2. [GCC 4. Type "c	New Window Open Open Module Recent Files Class Browser Path Browser	^N ^0 ℃C	Python Shell -bit) (default, Apr 12 2012, 11:28:34) Intitled information.
	Close Save Save As Save Copy As Print Window	ጊ F4 ^S ሶ ስS ጊ ስS ^ P	

A file dialog window will open.

Save As: a	phWorkshet01.py	
	Documents	a
ashwin b's Power	Name	Date Modified
bhaimson-psy	_regionlog	9/22/08
@ All	👻 _regiontex	9/22/08
0	📄 142Workspace	9/5/08
V PLACES	27183.rtf	10/14/08
😭 adamhaus	📄 Acrobat User Data	11/7/03
💹 Desktop	actionScriptRelated	8/21/08
Documents	AdamCalahan's work	11/21/08
Applications	AntlrWorksProjects	11/15/07
Octave	aohFig1.jpg	9/16/08
Movies	aohOctave9_17_08	9/16/08
Dictures	AppleWorks User Data	9/30/05

Navigate to the student's **Documents** folder. Enter a name a of the form

yourNameWS01.py

for the file and *press* the save button. Note the file's name must end with the suffix ".py".

The file dialog window will close and the **idle** program window's title will change to the file's path.

🐔 Python	File	Edit	Format	Run	Window	Help				
000						Python She	ell			
Python 2. FGCC 4.	7.3		7.3-2	(32-	-bit)	(default,	Apr VS01 pv	12	2012,	11:28:34)
Type "c			1.py 703	cr3, un	uskneenty	k	(501.p)		info	rmation.

To execute a Python statement to the following:

Enter the following Python statement into the idle program window: print 5*6.0 - 0.5*9.81*0.6**2.

	Python	File	Edit	Format	Run	Window	Help					
000	0						Python	Shell				
Pyth [GCC Type >>>	on 2. 4. "c	7.3	I EPD	7.3-2 D1.py - /U	(32 sers/al	-bit) nausknecht	(default /Documents/a	ohWS01.	9 12 py*	2012, info	11:28: rmatior	34)
	pr	int	5*0.	6 - 0.	5*9.	81*0.6	**2					

Then select the **Run Module** item from **idle**'s **Run** menu and click the **OK** button in the **Source Must Be Saved** dialog (you won't see this dialog if your program has already been saved).

The **idle's** Python Shell window will come to the front and **1.2342** will be displayed near the window's bottom.

🔿 🔿 🔿 aohWS01.py – /Users/ahausk	necht/Documents/aohWS01.py
print 5*0.6 - 0.5*9.81*	*0.6**2
00	Python Sh
Python 2.7.3 EPD 7.3 [GCC 4.0.1 (Apple Inc Type "copyright", "cr >>> 1.2342 I >>>	-2 (32-bit) (default, . build 5493)] on darw edits" or "license()" ====== RESTAR

by

To run your one-line Python program saved in the file **yourNameWS01.py** and located in the student's Documents folder, do the following

Click in the Terminal window to make it active. Enter the statement python ~/Documents/yourNameWS01.py

Python will execute your program and 1.2342 will be displayed in the Terminal window.

Another way to write Python programs is to use Enthought's new **Canopy** IDE. Start Canopy Selecting the **Applications** item from the **Go** menu located at the top of the screen.

- The **Applications** folder will be displayed in a window.
- ^b Double-click the **Canopy** application's **icon** located in the Applications folder.

The Canopy application will start and its window will open

- Click the **Editor** icon located on the right in Canopy's Welcome window.
- The **Canopy's Editor** window will open with three panes: the **File Browser** (left side), the **File Pane** (right top), and an interactive **Python Shell** (right bottom)

00	1	Editor – Canopy	
8 🕐 🔒 8			
🗴 💿 🛛 File Browser			
ilter: All Supported Files All Supported Files Recent Files Contemported Files Con	1	Create a new or Select files from you Tip: You can also drag and c	ur computer drop files/tabs here.
	Welcome to (with pylab- Type '?' for	Python Canopy's interactive data-an -backend set to: qt r more information.	/Users/ahauskned alysis environment!
	In [4]:		

- Click the **Create a new file** button in the editor.
- The a new empty **Untitled-1** file will be displayed in the **File Pane**.

🖬 Editor – Canopy		Editor - Cano	ру	
🗊 🚜 擾 🐌 😪		💼 🚜 🐴 🕪 🛛	6	
🔇 untitled-1		🛞 *untitled-1		
1 I		1 print 1234567890*≉	10	
		Pyth In [10]: %run "/var/fo Tmp-/tmpuq5SXV.py"	on /Users/a Iders/0V/0VoLYkomFU8qL11MM1MnWk++	ahausknecht -+TM/-
Python	/Users/ahausknecht	8225262591471025795047 6764162077997366010000	511436615355477641378922955141680 000000	93701699
In [9]:	<u></u>	In [11]:		* *

- Enter print 123456789**10 into Untitled-1 and press the green arrow icon to run execute the file.
- A temporary Python file will be created and executed. Its output is displayed in the Python shell.

- Enter the expression **123456789**10** in the Python shell and press the **Return** key.
- The expression is evaluated and the result is displayed in the Python shell.

To plot $y = \sin(x^2)$ over $[-2\pi, 2\pi]$, enter the following lines in the Python shell after the prompt In [n]:

and press the Return key after entering each line.

A window will open containing the plot of $y = sin(x^2)$ (see the figure on the left below).

To plot data, enter the following lines in the Python shell after the prompt In [n]:

x = range(100) # Generate a vector of x-values from 0 to 99
y = range(100) # Generate a vector of y-values from 0 to 99
random.shuffle(y) # Randomize the order of the y-values
plot(x,y, marker = 'o', color = 'red')

and press the Return key after entering each line.

A window will open containing the plot of the data (see the figure on the right above).

To plot contours of z = f(x, y), enter the following lines in the Python shell after the prompt **In** [n]:

Basic Programming Examples:

Python uses *indentation* and colons ':' rather than parentheses to group statements. The indentation level in a block of statements must match! Examples of the **control** statements **if-elif-else**, **for-loop**, and **while-loop** are shown in the table. Notice that the two statements inside the **while-loop** are at the same indentation level.

if-elif-else	for-loop	while-loop
<pre>x = random.randint(-10,10) if x > 0: print 'x is positive' elif x == 0: print 'x is zero' else: print 'x is negative'</pre>	<pre>for i in range(10, 20, 2): print i, i**2, i**3 Or for i in [10, 12, 14,16,18]: print i, i**2, i**3</pre>	<pre>s, k , n = 0, 1, 100 while k <= n: # Start s += k # Add k to s k += 1 # Add 1 to k s2 = n*(n+1)/2 # The fast way print 'The sum of integers ', print 'from 1 to 100 is', print ' %d = %d'% (s, s2)</pre>

Try each of the examples above by entering them in Canopy's Python shell. Here is an example of a Python function that finds square roots via **Newton's Method**:

```
def squareRootN(a):
    """Uses Newton's Method to find the square root of 'a'"""
    if a < 0: # Use a recursive call and convert to a complex number
        return complex(0, squareRootN(-a))
    elif a == 0:
        return 0
    else: # Now use Newton's method
                          # Make sure that 'a' is a float (not an int)
        a = float(a)
                                # Initialize
        x0, x1 = 0.0, a/2.0
        x0, x1 = 0.0, a/2.0# Informationwhile x1 != x0:# Repeat until x0 and x1 agree
            x0 = x1
                                 # Save the previous guess
            x1 = (x0 + a/x0)/2.0 \# Find a better guess
        return x0
ans = squareRootN(-3) # Test squareRootN
print ans, ans**2
```

Notice that this function finds roots of negative numbers as well as real numbers! The last two lines test the function. To try this example, do the following:

- Delete the text in the Untitled-1 and enter the code shown above.
- Save the file by clicking the save icon (third from the left edge of the control bar) with the name **squareRootN.py** in the Documents folder.

• Press the run icon to execute the file.

A third way to write Python programs is to use **ipython** which is part of the Enthought's Python distribution.

To do this, first quit the Canopy application by

Click on the **Canopy's Welcome** window (to bring it to the front) and select **Quit** from the **Canopy** menu.

Canopy will terminate.

Start ipython's notebook by

Click on the **Terminal** window (to bring it to the front) and entering

```
ipython notebook --pylab=inline --no-browser
```

The Terminal window will display messages similar to the last three lines shown below.

Start up **Firefox** and enter the url <u>http://127.0.0.1.8888</u> shown in the figure above into **Firefox**.

^(C) **iPython's Dashboard** will open in the computer's default browser.

Ē

1.

Note that the extra parameter **--pylab** causes **ipython** to automatically load important packages including *numpy* (large matrices, linear algebra) and *matplotlib* (plotting) needed for scientific computation. The inline parameter tells **ipython** to output plots to the notebook instead of displaying them in separate window.

Create a new notebook by doing the following.

- Click on the **New Notebook** button.
- A new untitled notebook will open in separate browser window.

Click on the text field containing "Untitled1", enter "yourNameNBW01" and click the Save button.

A the notebook will be saved with the given name.

IP[y]: Notebook	ahausknechtNBW01 Save QuickHelp
Notebook	
Actions New Open	in [].

To enter and execute a statement, do the following.

Click in the text field to the right of "In []." and enter	In [2]: 5*0.6-0.5*9.81*0.6**2
Click in the text held to the right of in []: and enter	Out[2]: 1.2342
5*0.6 - 0.5*9.81*0.6**2	
Next press the Shift and Return (Enter) keys.	IN []:

The expression will be evaluated and the result will be displayed in an output cell (see the figure above).

To plot $y = \sin(x^2)$, do the following.

Click in the text field to the right of "In []:" and enter the lines (in the same cell)

```
x = arange(-2*pi, 2*pi, 0.1) ## Generates a vector of x-values
y = sin(x**2) ## Generates a vector of y-values
plot(x, y)
```

and press the Shift and Return (Enter) keys.

The plot will be generated and added to the notebook (see the figure on page 6).

 \checkmark Try any of the other examples above in the **ipython's** notebook.

Additional Examples: Enter any of the following in ipython's notebook.

EXAMPLE 1: A While-loop to convert degrees Fahrenheit to degrees Centigrade.

1. NOTE: Use '%g' for number formatting. The '%g' uses as little space as possible to print the variable's value. 2. NOTE: Use '+=' operator to increment the variable 'C'.

ENTER THE FOLLOWING LINES IN AN EMPTY IPYTHON CELL!

Press the SHIFT-REURN keys together to execute the code!

EXAMPLE 2: Basic operations on lists.

A basic list can be thought of as a vector or 1 by n matrix. ENTER EACH LINE BELOW IN **DIFFERENT EMPTY** IPYTHON CELL. Press the SHIFT-REURN keys together to execute each cell's code!

C = [-10, -5, 0, 5,	10, 15, 20, 25, 30] # Create a list.
C.append(35)	# Add a new element.
print C	# PRESS SHIFT RETURN to view the list.
C = C + [40, 45]	# Extend the list.
print C	# PRESS SHIFT RETURN to view the list.
C.insert(0, -15)	<pre># Insert at front of list.</pre>
print C	# PRESS SHIFT RETURN to view the list.
del C[2]	# Delete C's third element.
print C	# PRESS SHIFT RETURN to view the list.
<pre>print len(C)</pre>	<pre># PRESS SHIFT RETURN: Length of the list C.</pre>
<pre>print C.index(10)</pre>	# PRESS SHIFT RETURN: Location of 10 in C.
print 10 in C	<pre># PRESS SHIFT RETURN#: Is 10 an element of C?</pre>
print C[-1]	<pre># PRESS SHIFT RETURN: View the last element of C.</pre>
print C[-2]	# PRESS SHIFT RETURN: Next to last element of C.

EXAMPLE 3: Degree conversion via for-loop ENTER THE LINES BELOW IN AN EMPTY IPYTHON CELL.

```
Cdegrees = [-20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40]
for C in Cdegrees:
    F = (9.0/5)*C + 32
    print C, F
```

EXAMPLE 4: Use the shorthand method for generating lists: list = [expression(x) for x in list]. ENTER THE LINES BELOW IN AN EMPTY IPYTHON CELL.

```
Cdegrees = [-5 + i*0.5 for i in range(21)]
Fdegrees = [ (9.0/5)*C + 32 for C in Cdegrees]
# Print the results as a right justified tables using the 'xd' and 'x.yE' format
# specifiers and the 'zip' lists function.
print " C F\n------"
for C, F in zip(Cdegrees, Fdegrees): # zip produces pairs of C's and F's
    print "%5d %5.2E" %(C,F)
```

EXAMPLE 5: A Recursive Function ENTER THE FOLLOWING IN A NEW IPYTHON CELL!

```
def fact(n):
    if n < 2: # The basis step
       return 1
    else: # The recursive step
       return n*fact(n-1)
    print "%d! = %d"%(50, fact(50))
```

EXAMPLE 6: Approximating the sine function Plot Taylor polynomial approximations to Sin(x)

 $sin(x) = x - x^3/3! + x^5/5! - x^7/7! + ...$ ENTER THE FOLLOWING IN A NEW IPYTHON CELL!

```
def taylorSin(x, n):
   s, xSqr, term = x, x^{**2}, x
   for i in range(1,n):
        twoI = 2*i
        term *= -xSqr/float((twoI+1)*twoI)
        s += term
   return s
## Generate the x-values
xValues = arange(-2*pi, 2*pi, .01)
n = len(xValues)
yValues = sin(xValues)
## Plot y = sin(x)
plot(xValues, sin(xValues), 'r', linewidth = 3)
axis([-2*pi, 2*pi, -1.5, 1.5])
## Now overlay plots of the Taylor polynomial approximations
for p in range(5):
   for i, x in zip(range(n), xValues):
        yValues[i] = taylorSin(x, p)
   plot(xValues, yValues)
title("Taylor Polynomial Approximations to y = sin(x)")
xlabel('x'); ylabel('y');
```

EXAMPLE 7: Using SciPy's quad function to plot a function defined by an integral.

Plot the function $f(x) = \int_{1}^{x} \frac{\sin(t)}{t} dt$. ENTER THE FOLLOWING IN A NEW IPYTHON CELL! from scipy.integrate import quad xValues = arange(0, 10, .01) yValues = zeros(len(xValues)) # Create a vector of zeros of the same length as xValues errors = zeros(len(xValues)) i=0 for x in xValues: # Use quad to approximate f(x) with the error estimate yValues[i], errors[i] = quad(lambda t: sin(t)/t, 1, x) # Pass an anonymous function i += 1 print "Max Error: ", max(errors) plot(xValues, yValues, '+-') title("y(x) = integral(sin(t)/t, 1, x)") xlabel('x'); ylabel('y'); **EXAMPLE 8**: Solution of y'' + py' + qy' = 0 for various initial conditions.

Step 1: Convert the 2nd-order linear ODE to a first-order 2D system

Let
$$v = y'$$
, then $dv/dt = y''$; hence,
 $dy/dt = 0 \cdot y + 1 \cdot v$
 $dv/dt = -q \cdot v - p \cdot v$

Thus, in terms of matrices and vectors

$$\mathbf{X'} = \begin{bmatrix} dy/dt \\ dv/dt \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -q & -p \end{bmatrix} \begin{bmatrix} y \\ v \end{bmatrix}$$

ENTER THE FOLLOWING IN A NEW IPYTHON CELL!

```
from scipy.integrate import odeint
# UNCOMMENT/COMMENT OUT EACH OF lines A., B., C., or D.
# A. Undamped
p = 0; q = 1;
# B. Over-damped
## p = -1.0; q = -2.0;
# C. Critically-damped
## p = 2.0; q = 1.0;
# D. Under-damped
## p = 2.0; q = 2.0;
##
def func(X, t):
    return [0*X[0]+1*X[1], -q*X[0]+-p*X[1]]
t = arange(0, pi, .01)
initialConds = []
for y0 in arange(-1, 1.25, 0.25):
    for dydt0 in arange(-1, 1.25, 0.25):
        initialConds.append([y0, dydt0])
figure(1); hold(True)
title("Solutions of y'' + py' + qy = 0")
xlabel('t'); ylabel('y');
figure(2); hold(True)
title("Phase Plane Plots of \nSolutions of y'' + py' + qy = 0")
xlabel('y'); ylabel('dy/dt');
for X0 in initialConds:
    X = odeint(func, X0, t)
    figure(1); plot(t, X[:,0])
    figure(2); plot(X[:,0], X[:,1])
```

EXAMPLE 9: Near Resonance: Solution of $y'' + \omega^2 y = a\cos(bt)$

In terms of matrices and vectors
$$\mathbf{X}' = \begin{bmatrix} dy/dt \\ dv/dt \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\omega^2 & 0 \end{bmatrix} \begin{bmatrix} y \\ y \end{bmatrix} + \begin{bmatrix} 0 \\ a\cos(b) \end{bmatrix}$$

ENTER THE FOLLOWING IN A NEW IPYTHON CELL!

```
from scipy.integrate import odeint
w = 2.0; a = 1.0;
dw = 0.1 ## Should be small;
b = w + dw
def func(X, t):
    return [0*X[0]+1*X[1], -(w**2)*X[0] + 0*X[1] + a*cos(b*t)]
t = arange(0, 120, .01)
figure(1); hold(True)
tStr = "Near Resonance Solution of\n"
title(tStr + "y'' + w^2y = acos(bt), b = w + g^{(dw)})
xlabel('t'); ylabel('y');
figure(2); hold(True)
tStr = "Phase Plane Plot of a Near Resonance Solution of\n"
title(tStr + "y'' + w^2y = acos(bt), b = w+g"(dw))
xlabel('y'); ylabel('dy/dt');
X = odeint(func, [1, 0], t)
figure(1); plot(t, X[:,0])
figure(2); plot(X[:,0], X[:,1])
```

EXAMPLE 10: Modeling the Interior Temperature of a Barn using the model:

$$dT/dt = k(C(t) - T) = f(T)$$

where T(t) = temperature of the inside of a barn with no internal heating or cooling with T(0) = 60k = temperature coefficient = 0.25

C(t) = temperature outside the barn = 70 - 10 cos $\left(\frac{\pi}{12}t\right)$, $0 \le t \le 24$.

ENTER THE FOLLOWING IN A NEW IPYTHON CELL!

```
from scipy.integrate import odeint
k = 0.25
def C(t):
   return 70 - 10*cos(pi/12*t)
## Create a function that returns f(T) as a 1 x 1 matrix.
def func(T, t):
    return [k*(C(t) - T[0])] ## Note that T is a vector of length 1
## Create a vector of t-values
t = arange(0, 24, .01)
T = odeint(func, 60, t)
plot(t, T, linewidth = 2)
plot(t, C(t), 'r', linewidth = 2)
title("Solution of dT/dt = k(C(t) - T), \n where C(t) = 70 - 10\cos(pi/12 t)")
xlabel('t'); ylabel('T');
## Draw a horizontal line at at Ts
axhline(y=70, color = 'k', linewidth = 3)
## Set the axes limits
axis([0, 24, 50, 90])
```

EXAMPLE 11: A Simple Game

Notes: 1. "raw_input(...)" is used for keyboard input.

- 2. "if-elif-else" statement is used to test a user's guess.
- 3. In general, what is minimum number of many guesses needed to win?

Start **idle** (or **canopy**) and create a new file window (or pane) and save it as "YourNameGame.py". ENTER THE CODE BELOW IN THE NEW WINDOW.

```
import math
from random import randint
# Generate a target integer to guess in the range 0 to 1023.
target = randint(0, 1024)
while True: # loop forever.
    # Request text input from the user with a prompt.
    guess = raw input("Enter an integer guess (0 to 1023, or 's' to STOP) => ")
    # Check to see if the user entered a string of digits.
    if not guess.isdigit():
        break # user wants to stop, so jump out of the loop.
    # Convert the digit string to an integer.
   intGuess = int(guess)
    # Test the guess using Python's "if-elif-else" statement
    # and print a message to the user.
   if intGuess == target:
        print "You won!"
        # Generate a new target to guess.
       target = randint(0, 1024)
    elif intGuess > target:
        print "Your guess is too big!"
    else:
       print "Your guess is too small!"
#
print "The game is over!"
```