Numerical computations for the tear film equations in a blink cycle with spectral collocation methods

A. Heryudono¹, R.J. Braun¹, T.A. Driscoll¹, K.L. Maki¹, L.P. Cook¹, and P.E. King-Smith²

> ¹Mathematical Sciences, U of Delaware and ²College of Optometry, Ohio State U

Applied Mathematics Seminar George Mason University October 26 2007

Outline

Problem

- 2 Spectral collocation methods
- Overcoming difficulties
- Imposing boundary conditions
- 5 Numerical results
- 6 Ongoing research

3

(日) (同) (日) (日) (日)

How do we simulate the dynamics of the tear film ?

Interference fringes.

イロト イポト イヨト イヨト

Get insight from 1-D case first.

Physical parameters: Braun et al.

Constants	Description
L' = 5 mm	half the width of the palpebral fissure (x direction)
$d=5~\mu{ m m}$	thickness of the tear film away from ends
$\epsilon = \frac{d}{l'} \approx 10^{-3}$	small parameter for lubrication theory
$U_m = 10 - 30 \text{ cm/s}$	maximum speed across the film
$L'/U_m = 0.05 \ s$	time scale for real blink speeds
$\sigma_0 = 45 \text{ mN/m}$	surface tension
$\mu = 10^{-3} \text{ Pa} \cdot \text{s}$	viscosity
$ ho=10^3~{ m kg/m^3}$	density

イロン イヨン イヨン イヨン

Э

• Inside the film

- Viscous incompressible parallel flow inside the film.
- Inertial terms and gravity are neglected.

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

• Inside the film

- Viscous incompressible parallel flow inside the film.
- Inertial terms and gravity are neglected.

• At the wall

• On the impermeable wall at y = 0, we have the boundary conditions

$$v = 0, \quad u = \beta u_y;$$

3

ヘロト 人間 とくほとう ヨン

• Inside the film

- Viscous incompressible parallel flow inside the film.
- Inertial terms and gravity are neglected.
- At the wall
 - On the impermeable wall at y = 0, we have the boundary conditions

$$v = 0, \quad u = \beta u_y;$$

• At the free surface

• Simplified normal stress condition at y = h(x, t)

$$p = -Sh_{xx}, \quad S = \frac{\epsilon^3 \sigma}{\mu U_m}$$

• Kinematic condition

3

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$h_t + q_x = 0 \text{ on } X(t) \le x \le 1,$$

where

$$q=\int_0^h u(x,y,t)dy$$

• The stress-free case.

$$q(x,t) = Sh_{xxx}\left(rac{h^3}{3} + \beta h^2
ight)$$

Boundary conditions

 $h(X(t),t) = h(1,t) = h_0 \quad q(X(t),t) = X_t h_0 + Q_{top} \quad q(1,t) = -Q_{bot}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

$$h_t + q_x = 0$$
 on $X(t) \le x \le 1$,

where

$$q=\int_0^h u(x,y,t)dy$$

• The stress-free case.

$$q(x,t) = Sh_{xxx}\left(rac{h^3}{3} + eta h^2
ight)$$

• The uniform stretching limit (USL).

$$q(x,t) = \frac{h^3}{12} \left(1 + \frac{3\beta}{h+\beta} \right) (Sh_{xxx}) + X_t \frac{1-x}{1-X} \frac{h}{2} \left(1 + \frac{\beta}{h+\beta} \right)$$

Boundary conditions

 $h(X(t),t) = h(1,t) = h_0 \quad q(X(t),t) = X_t h_0 + Q_{top} \quad q(1,t) = -Q_{bot}.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □

Problem

Realistic lid motion 1/3 open

2/3 open

Closed

Berke and Mueller (98), Heryudono et al (07)

Э

イロト イヨト イヨト イヨト

• Flux proportional to lid motion (FPLM) (Jones et al (05))

$$Q_{top} = -X_t h_e, \quad Q_{bot} = 0$$

• Add in lacrimal gland supply and punctal drainage approximated by Gaussians.

Picture is taken from the Wikipedia commons

(日) (同) (三) (三)

- Moving boundary problem.
 - Fixed grid scheme is not convenient.

E

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

- Moving boundary problem.
 - Fixed grid scheme is not convenient.
- Pourth-order in space.
 - Roundoff errors in computing high derivatives.
 - Stiffness.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Moving boundary problem.
 - Fixed grid scheme is not convenient.
- Pourth-order in space.
 - Roundoff errors in computing high derivatives.
 - Stiffness.
- Nonlinearity.
 - Implicit method.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Moving boundary problem.
 - Fixed grid scheme is not convenient.
- Pourth-order in space.
 - Roundoff errors in computing high derivatives.
 - Stiffness.
- Nonlinearity.
 - Implicit method.
- Third-order boundary conditions.
 - Imposing boundary conditions (BCs).
 - Stability.

イロト 人間ト イヨト イヨト

- Moving boundary problem.
 - Fixed grid scheme is not convenient.
- Pourth-order in space.
 - Roundoff errors in computing high derivatives.
 - Stiffness.
- Nonlinearity.
 - Implicit method.
- Third-order boundary conditions.
 - Imposing boundary conditions (BCs).
 - Stability.
- Variable resolution and/or accurate high-order derivatives near boundaries.
 - Adaptive scheme may be needed.

- 4 同 6 4 日 6 4 日 6

We transform the PDE into a fixed domain [-1, 1] via

$$\xi = 1 - 2\frac{1 - x}{1 - X(t)}.$$

The equations (e.g. Stress free case) become

$$H_{t} = \frac{1-\xi}{L-X} X_{t} H_{\xi} - \left(\frac{2}{L-X}\right) Q_{\xi}$$

$$Q = S \left(\frac{2}{L-X}\right)^{3} \left(\frac{H^{3}}{3} + \beta H^{2}\right) H_{\xi\xi\xi}$$

$$H(\pm 1, t) = h_{0}, \ Q(-1, t) = X_{t} h_{0} + Q_{top}, \ Q(1, t) = -Q_{bot},$$

$$H(\xi, 0) = h_{m} + (h_{0} - h_{m})\xi^{m}.$$

 $\xi \in [-1,1].$

<□> <囲 > < 囲 > < 囲 > < 匣 > < 匣 > □ Ξ

Advantages

- Global high accuracy for smooth function.
- Fast matrix-vector algorithm via FFT.
- Powerful theory (potential theory, orthogonal functions)

Disadvantages

- Dense differentiation matrices.
- Must use nodes with special distributions.
- Hard to apply in problems involving irregular geometry.

イロト 人間ト イヨト イヨト

$$H(x) = \sum_{j=0}^{n} H_{j}\ell_{j}(x), \quad \ell_{j} = \frac{\prod_{k=0, k \neq j}^{n} (x - x_{k})}{\prod_{k=0, k \neq j}^{n} (x_{j} - x_{k})}$$

The Lagrange polynomial ℓ_j corresponding to the node x_j has the property

$$\ell_j(x_k) = \begin{cases} 1 & , j = k, \\ 0 & , \text{ otherwise,} \end{cases} \quad j, k = 0..., n.$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Analyticity of f(x) inside the region bounded by the smallest equipotential curve that contains [-1, 1]

$$H'(x) = \sum_{j=0}^{n} H_{j}\ell'_{j}(x), \quad H''(x) = \sum_{j=0}^{n} H_{j}\ell''_{j}(x)$$

Computing k-th derivative \Rightarrow Matrix-Vector product

$$\begin{bmatrix} D^{(k)} \end{bmatrix} \begin{bmatrix} u_0 \\ \vdots \\ u_N \end{bmatrix} = \begin{bmatrix} u_0^{(k)} \\ \vdots \\ u_N^{(k)} \end{bmatrix},$$

where,

$$D_{ij}^{(1)} = \ell_j'(x_i), \ \ D_{ij}^{(2)} = \ell_j''(x_i), \ \ ext{etc.}$$

Trefethen (2000), Spectral Methods in MATLAB, Welfert (97), Baltensperger & Trummer (02)

3

ヘロト 人間ト 人造ト 人造ト

Spectral convergence for the first derivative of $f(x) = 1/(1 + 16x^2)$

Э

Spectral discretization in space and standard ODE in time.

Properties.

- Extreme eigenvalues of Chebyshev differentiation matrices: $O(N^2)$.
- Minimal spacing of N Chebyshev nodes: $\Delta x_{min} = 1 - \cos(\pi/N) = O(N^{-2}).$
- Explicit time marching scheme $\rightarrow \Delta t = O(N^{-2})$.

Kosloff & Tal-Ezer (93)

Map Chebyshev points to a set points with larger minimal spacing.

イロト イポト イヨト イヨト 二日

Properties.

- Extreme eigenvalues of Chebyshev differentiation matrices: $O(N^2)$.
- Minimal spacing of N Chebyshev nodes: $\Delta x_{min} = 1 - \cos(\pi/N) = O(N^{-2}).$
- Explicit time marching scheme $\rightarrow \Delta t = O(N^{-2})$.

Kosloff & Tal-Ezer (93)

- Map Chebyshev points to a set points with larger minimal spacing.
- Roundoff reduction

Consider a symmetric transformation

$$\psi = g(\xi; \alpha) = \frac{\sin^{-1}(\alpha\xi)}{\sin^{-1}(\alpha)}, \quad \psi, \xi \in [-1, 1], \quad \alpha \in (0, 1).$$

By using chain rule, we obtain

$$\frac{df}{d\psi} = \frac{1}{g'(\xi;\alpha)} \frac{df}{d\xi}$$

for any given $f \in C^1[-1, 1]$.

 $lpha = 1 - rac{c}{N^2} + O(N^{-3}), \ \ c > 0 \ \ \Rightarrow \Delta \psi_{min} = O(N^{-1})$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

$$\psi = g(\xi; \alpha, \beta) = \frac{1}{a} \left(\sin^{-1} \left(\frac{2\alpha\beta\xi + \alpha - \beta}{\alpha + \beta} \right) - b \right), \quad \psi, \xi \in [-1, 1]$$

where α and β control distribution points near $\xi = 1$ and $\xi = -1$ respectively. If $\alpha = \beta$, we end up having back to standard symmetric mapping.

3

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

Properties.

 Roundoff error in computing derivatives with Chebyshev differentiation matrices:

 $O(N^{2k}),$

where k is the order of derivative.

• Mostly happens near boundaries.

Don & Solomonoff (97) Choice of parameter :

$$\alpha = \operatorname{sech}\left(\frac{|\mathit{In}\epsilon|}{\mathit{N}}\right),$$

where ϵ is the machine precision. Roundoff error reduction $\Rightarrow O((N ||n\epsilon|)^k)$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Let f(x) be a smooth function on the interval [-1,1] defined by

$$f(x) = 1 - \frac{h_0 - 1}{6(m+1)} (2m^2(x^2 - 1) + m(x^2 - 7) - 6)x^{2m+2}.$$

The graphs of f(x) for m = 10 and its derivatives.

크

Fornberg (06)

• Scale Chebyshev points such that x_1 and x_{N-1} become -1 and 1 respectively.

크

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fornberg (06)

- Scale Chebyshev points such that x_1 and x_{N-1} become -1 and 1 respectively.
- Form interpolant based on new nodes.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fornberg (06)

- Scale Chebyshev points such that x_1 and x_{N-1} become -1 and 1 respectively.
- Form interpolant based on new nodes.
- Solve u_0 and u_N in terms of unknown u_j based on boundary conditions. Then incorporate them in the differentiation matrices.

イロト 人間ト イヨト イヨト

H at discretized points.

$$H = \begin{bmatrix} H_0 \\ H_1 \\ \vdots \\ H_{N-1} \\ H_N \end{bmatrix}$$

k-th partial derivatives of $H(\xi, t)$ at unknown points $\xi_{2}..\xi_{N-2}$ can be written as

$$H^{(k)} = D^{(k)}H$$

 $D^{(k)}$ already contains information about H_0 , H_1 , H_{N-1} and H_N which are obtained from boundary conditions.

 \Rightarrow In our simulations, only works for linear case.

イロト イポト イヨト イヨト 三日

H and Q each has its own interpolant. No fictitious points needed.

$$H = \begin{bmatrix} H_0 \\ H_1 \\ \vdots \\ H_{N-1} \\ H_N \end{bmatrix} \qquad \qquad Q = \begin{bmatrix} Q_0 \\ Q_1 \\ \vdots \\ Q_{N-1} \\ Q_N \end{bmatrix}$$

٠

ヘロト 人間ト 人造ト 人造ト

$$H^{(k)} = D^{(k)}H$$
 and $Q^{(k)} = D^{(k)}Q$

 H_0 , H_N , Q_0 and Q_N are known from boundary conditions and hence only values of H at inner nodes ξ_i , where i = 1, ..., N - 1, need to be found.

 \Rightarrow The system of eqs is twice as large

$$M\begin{bmatrix}H_t\\Q_t\end{bmatrix} = \begin{bmatrix}I & 0\\0 & 0\end{bmatrix}\begin{bmatrix}H_t\\Q_t\end{bmatrix} = \begin{bmatrix}AD^{(1)}H + BD^{(1)}Q\\C(\frac{1}{3}H^3 + \beta H^2)(D^{(3)}H) - Q\end{bmatrix}$$

A, B, and C are all $(N-1) \times (N-1)$ matrix with elements

$$A_{ij} = rac{1 - \xi_i}{L - X(t)}, \ \ B_{ij} = rac{-2}{L - X(t)}, \ \ \ C_{ij} = S\left(rac{2}{L - X(t)}
ight)^3$$

for all i, j = 1, ..., N - 1. *M* is a singular $2(N - 1) \times 2(N - 1)$ matrix called mass matrix.

 \Rightarrow Solve DAE of index 1 with DASPK or ode15s in MATLAB.

٠

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

• No fictitious points needed.

Set Q

$$Q = X_t \frac{1-\xi}{2} \frac{H}{2} \left(1 + \frac{\beta}{H+\beta} \right) + \frac{H^3}{12} \left(1 + \frac{3\beta}{H+\beta} \right) \left[S \left(\frac{2}{1-X} \right)^3 H_{\xi\xi\xi} \right]$$

- When computing Q_{ξ} , use $Q(-1,t) = X_t h_0 + Q_{top}, Q(1,t) = -Q_{bot}$.
- Solve the initial value problem at inner nodes

$$H_t = \frac{1-\xi}{1-X} X_t H_{\xi} - \left(\frac{2}{1-X}\right) Q_{\xi}$$

with ode solver ode15s.

 \Rightarrow possible connection with penalty method.

э.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Homogenization can be done by shifting variables H and Q such that

$$\hat{H}=H-h_0$$
 $\hat{Q}=Q-(a\xi+b).$

It is clear that $\hat{H}(\pm 1, t) = 0$. In order to find a and b such that $\hat{Q}(\pm 1, t) = 0$, we end up solving 2×2 system of linear equations consisting of a + b = Q(1, t) and -a + b = Q(-1, t).

 \Rightarrow Our simulations work with/without homogenization.

イロト 不得 トイヨト イヨト

Parameters N = 351, $\lambda = 0.1$, $\beta = 10^{-2}$, $S = 2 \times 10^{-5}$, $h_0 = 13$, $h_e = 0.6$, and initial volume $V_0 = 2.576$. Our simulation is done in MATLAB with ode15s as ODE solver.

 $S=2 imes 10^{-5}$ case at various times

Interference fringes.

More results \Rightarrow Braun's talk today !!

→

- What happen with fictitious point method in the nonlinear case ?
- Adaptive radial basis functions with MOL (Driscoll & Heryudono (06)).
- Adaptive space-time radial basis functions.
- 2-D simulation.

(日) (周) (王) (王)