Numerical computations for the tear film equations in a blink cycle with spectral collocation methods
A. Heryudono ${ }^{1}$, R.J. Braun ${ }^{1}$, T.A. Driscoll ${ }^{1}$, K.L. Maki ${ }^{1}$, L.P. Cook ${ }^{1}$, and P.E. King-Smith ${ }^{2}$

${ }^{1}$ Mathematical Sciences, U of Delaware and ${ }^{2}$ College of Optometry, Ohio State U

Applied Mathematics Seminar George Mason University

October 262007

Outline

(1) Problem
(2) Spectral collocation methods
(3) Overcoming difficulties

4 Imposing boundary conditions
(5) Numerical results
(6) Ongoing research

How do we simulate the dynamics of the tear film ?

Interference fringes.

Get insight from 1-D case first.

Physical parameters: Braun et al.

Constants	Description
$L^{\prime}=5 \mathrm{~mm}$	half the width of the palpebral fissure (x direction)
$d=5 \mu \mathrm{~m}$	thickness of the tear film away from ends
$\epsilon=\frac{d}{L^{\prime}} \approx 10^{-3}$	small parameter for lubrication theory
$U_{m}=10-30 \mathrm{~cm} / \mathrm{s}$	maximum speed across the film
$L^{\prime} / U_{m}=0.05 \mathrm{~s}$	time scale for real blink speeds
$\sigma_{0}=45 \mathrm{mN} / \mathrm{m}$	surface tension
$\mu=10^{-3} \mathrm{~Pa} \cdot \mathrm{~s}$	viscosity
$\rho=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$	density

- Inside the film
- Viscous incompressible parallel flow inside the film.
- Inertial terms and gravity are neglected.
- Inside the film
- Viscous incompressible parallel flow inside the film.
- Inertial terms and gravity are neglected.
- At the wall
- On the impermeable wall at $y=0$, we have the boundary conditions

$$
v=0, \quad u=\beta u_{y}
$$

- Inside the film
- Viscous incompressible parallel flow inside the film.
- Inertial terms and gravity are neglected.
- At the wall
- On the impermeable wall at $y=0$, we have the boundary conditions

$$
v=0, \quad u=\beta u_{y}
$$

- At the free surface
- Simplified normal stress condition at $y=h(x, t)$

$$
p=-S h_{x x}, \quad S=\frac{\epsilon^{3} \sigma}{\mu U_{m}}
$$

- Kinematic condition

$$
h_{t}+q_{x}=0 \text { on } X(t) \leq x \leq 1
$$

where

$$
q=\int_{0}^{h} u(x, y, t) d y
$$

- The stress-free case.

$$
q(x, t)=S h_{x x x}\left(\frac{h^{3}}{3}+\beta h^{2}\right)
$$

Boundary conditions

$$
h(X(t), t)=h(1, t)=h_{0} \quad q(X(t), t)=X_{t} h_{0}+Q_{t o p} \quad q(1, t)=-Q_{b o t}
$$

$$
h_{t}+q_{x}=0 \text { on } X(t) \leq x \leq 1,
$$

where

$$
q=\int_{0}^{h} u(x, y, t) d y
$$

- The stress-free case.

$$
q(x, t)=S h_{x x x}\left(\frac{h^{3}}{3}+\beta h^{2}\right)
$$

- The uniform stretching limit (USL).

$$
q(x, t)=\frac{h^{3}}{12}\left(1+\frac{3 \beta}{h+\beta}\right)\left(S h_{x x x}\right)+X_{t} \frac{1-x}{1-x} \frac{h}{2}\left(1+\frac{\beta}{h+\beta}\right)
$$

Boundary conditions

$$
h(X(t), t)=h(1, t)=h_{0} \quad q(X(t), t)=X_{t} h_{0}+Q_{t o p} \quad q(1, t)=-Q_{b o t} .
$$

Berke and Mueller (98), Heryudono et al (07)

- Flux proportional to lid motion (FPLM) (Jones et al (05))

$$
Q_{t o p}=-X_{t} h_{e}, \quad Q_{b o t}=0
$$

- Add in lacrimal gland supply and punctal drainage approximated by Gaussians.

Picture is taken from the Wikipedia commons
(1) Moving boundary problem.

- Fixed grid scheme is not convenient.
(1) Moving boundary problem.
- Fixed grid scheme is not convenient.
(2) Fourth-order in space.
- Roundoff errors in computing high derivatives.
- Stiffness.
(1) Moving boundary problem.
- Fixed grid scheme is not convenient.
(2) Fourth-order in space.
- Roundoff errors in computing high derivatives.
- Stiffness.
(3) Nonlinearity.
- Implicit method.
(1) Moving boundary problem.
- Fixed grid scheme is not convenient.
(2) Fourth-order in space.
- Roundoff errors in computing high derivatives.
- Stiffness.
(3) Nonlinearity.
- Implicit method.
(3) Third-order boundary conditions.
- Imposing boundary conditions (BCs).
- Stability.
(1) Moving boundary problem.
- Fixed grid scheme is not convenient.
(2) Fourth-order in space.
- Roundoff errors in computing high derivatives.
- Stiffness.
(3) Nonlinearity.
- Implicit method.
(3) Third-order boundary conditions.
- Imposing boundary conditions (BCs).
- Stability.
(5) Variable resolution and/or accurate high-order derivatives near boundaries.
- Adaptive scheme may be needed.

We transform the PDE into a fixed domain $[-1,1]$ via

$$
\xi=1-2 \frac{1-x}{1-X(t)} .
$$

The equations (e.g. Stress free case) become

$$
\begin{aligned}
H_{t} & =\frac{1-\xi}{L-X} X_{t} H_{\xi}-\left(\frac{2}{L-X}\right) Q_{\xi} \\
Q & =S\left(\frac{2}{L-X}\right)^{3}\left(\frac{H^{3}}{3}+\beta H^{2}\right) H_{\xi \xi \xi} \\
H(\pm 1, t) & =h_{0}, Q(-1, t)=X_{t} h_{0}+Q_{t o p}, Q(1, t)=-Q_{b o t}, \\
H(\xi, 0) & =h_{m}+\left(h_{0}-h_{m}\right) \xi^{m} .
\end{aligned}
$$

$\xi \in[-1,1]$.

Advantages

- Global high accuracy for smooth function.
- Fast matrix-vector algorithm via FFT.
- Powerful theory (potential theory, orthogonal functions)

Disadvantages

- Dense differentiation matrices.
- Must use nodes with special distributions.
- Hard to apply in problems involving irregular geometry.

$$
H(x)=\sum_{j=0}^{n} H_{j} \ell_{j}(x), \quad \ell_{j}=\frac{\prod_{k=0, k \neq j}^{n}\left(x-x_{k}\right)}{\prod_{k=0, k \neq j}^{n}\left(x_{j}-x_{k}\right)}
$$

The Lagrange polynomial ℓ_{j} corresponding to the node x_{j} has the property

$$
\ell_{j}\left(x_{k}\right)=\left\{\begin{array}{lll}
1 & , & j=k, \\
0 & , & \text { otherwise },
\end{array} \quad j, k=0 \ldots, n\right.
$$

Node locations $\quad x_{j}, \quad j=0,1, \ldots, N$	Comments
$x_{j}=-1+\frac{2 j}{N}$	equi-spaced
$x_{j}=-\cos \left(\frac{\pi j}{N}\right)$	Chebyshev

Chebyshev points

Analyticity of $f(x)$ inside the region bounded by the smallest equipotential curve that contains $[-1,1]$

$$
H^{\prime}(x)=\sum_{j=0}^{n} H_{j} \ell_{j}^{\prime}(x), \quad H^{\prime \prime}(x)=\sum_{j=0}^{n} H_{j} \ell_{j}^{\prime \prime}(x)
$$

Computing k-th derivative \Rightarrow Matrix-Vector product

$$
\left[\begin{array}{ll}
D^{(k)}
\end{array}\right]\left[\begin{array}{c}
u_{0} \\
\vdots \\
u_{N}
\end{array}\right]=\left[\begin{array}{c}
u_{0}^{(k)} \\
\vdots \\
u_{N}^{(k)}
\end{array}\right]
$$

where,

$$
D_{i j}^{(1)}=\ell_{j}^{\prime}\left(x_{i}\right), \quad D_{i j}^{(2)}=\ell_{j}^{\prime \prime}\left(x_{i}\right), \quad \text { etc. }
$$

Trefethen (2000), Spectral Methods in MATLAB, Welfert (97), Baltensperger \& Trummer (02)

Spectral convergence for the first derivative of $f(x)=1 /\left(1+16 x^{2}\right)$

Spectral discretization in space and standard ODE in time.

example :
$u_{t}=u_{x} \quad x \in[-1,1)$
$u(1, t)=0$
\Downarrow
$\hat{u}_{t}=\tilde{D} \hat{u}$
$\Delta t \Lambda(\tilde{D}) \Rightarrow$ stability

Properties.

- Extreme eigenvalues of Chebyshev differentiation matrices: $O\left(N^{2}\right)$.
- Minimal spacing of N Chebyshev nodes:
$\Delta x_{\min }=1-\cos (\pi / N)=O\left(N^{-2}\right)$.
- Explicit time marching scheme $\rightarrow \Delta t=O\left(N^{-2}\right)$.
Kosloff \& Tal-Ezer (93)
- Map Chebyshev points to a set points with larger minimal spacing.

Properties.

- Extreme eigenvalues of Chebyshev differentiation matrices: $O\left(N^{2}\right)$.
- Minimal spacing of N Chebyshev nodes:

$$
\Delta x_{\min }=1-\cos (\pi / N)=O\left(N^{-2}\right) .
$$

- Explicit time marching scheme $\rightarrow \Delta t=O\left(N^{-2}\right)$.
Kosloff \& Tal-Ezer (93)
- Map Chebyshev points to a set points with larger minimal spacing.
- Roundoff reduction

Consider a symmetric transformation

$$
\psi=g(\xi ; \alpha)=\frac{\sin ^{-1}(\alpha \xi)}{\sin ^{-1}(\alpha)}, \quad \psi, \xi \in[-1,1], \quad \alpha \in(0,1)
$$

By using chain rule, we obtain

$$
\frac{d f}{d \psi}=\frac{1}{g^{\prime}(\xi ; \alpha)} \frac{d f}{d \xi}
$$

for any given $f \in C^{1}[-1,1]$.

$$
\alpha=1-\frac{c}{N^{2}}+O\left(N^{-3}\right), \quad c>0 \Rightarrow \Delta \psi_{\min }=O\left(N^{-1}\right)
$$

$$
\psi=g(\xi ; \alpha, \beta)=\frac{1}{a}\left(\sin ^{-1}\left(\frac{2 \alpha \beta \xi+\alpha-\beta}{\alpha+\beta}\right)-b\right), \quad \psi, \xi \in[-1,1]
$$

where α and β control distribution points near $\xi=1$ and $\xi=-1$ respectively. If $\alpha=\beta$, we end up having back to standard symmetric mapping.

Properties.

- Roundoff error in computing derivatives with Chebyshev differentiation matrices:

$$
O\left(N^{2 k}\right),
$$

where k is the order of derivative.

- Mostly happens near boundaries.

Don \& Solomonoff (97) Choice of parameter :

$$
\alpha=\operatorname{sech}\left(\frac{| | n \epsilon \mid}{N}\right),
$$

where ϵ is the machine precision.
Roundoff error reduction $\Rightarrow O\left((N|\ln \epsilon|)^{k}\right)$

Let $f(x)$ be a smooth function on the interval $[-1,1]$ defined by

$$
f(x)=1-\frac{h_{0}-1}{6(m+1)}\left(2 m^{2}\left(x^{2}-1\right)+m\left(x^{2}-7\right)-6\right) x^{2 m+2} .
$$

The graphs of $f(x)$ for $m=10$ and its derivatives.

Dashed lines are the theoretical roundoff effects

Fornberg (06)

- Scale Chebyshev points such that x_{1} and x_{N-1} become -1 and 1 respectively.

Fornberg (06)

- Scale Chebyshev points such that x_{1} and x_{N-1} become -1 and 1 respectively.
- Form interpolant based on new nodes.

Fornberg (06)

- Scale Chebyshev points such that x_{1} and x_{N-1} become -1 and 1 respectively.
- Form interpolant based on new nodes.
- Solve u_{0} and u_{N} in terms of unknown u_{j} based on boundary conditions. Then incorporate them in the differentiation matrices.
H at discretized points.

$$
H=\left[\begin{array}{c}
H_{0} \\
H_{1} \\
\vdots \\
H_{N-1} \\
H_{N}
\end{array}\right]
$$

k-th partial derivatives of $H(\xi, t)$ at unknown points $\xi_{2} . . \xi_{N-2}$ can be written as

$$
H^{(k)}=D^{(k)} H
$$

$D^{(k)}$ already contains information about H_{0}, H_{1}, H_{N-1} and H_{N} which are obtained from boundary conditions.
\Rightarrow In our simulations, only works for linear case.
H and Q each has its own interpolant. No fictitious points needed.

$$
\begin{gathered}
H=\left[\begin{array}{c}
H_{0} \\
H_{1} \\
\vdots \\
H_{N-1} \\
H_{N}
\end{array}\right] \quad Q=\left[\begin{array}{c}
Q_{0} \\
Q_{1} \\
\vdots \\
Q_{N-1} \\
Q_{N}
\end{array}\right] . \\
H^{(k)}=D^{(k)} H \text { and } Q^{(k)}=D^{(k)} Q
\end{gathered}
$$

H_{0}, H_{N}, Q_{0} and Q_{N} are known from boundary conditions and hence only values of H at inner nodes ξ_{i}, where $i=1, . ., N-1$, need to be found.
\Rightarrow The system of eqs is twice as large

$$
M\left[\begin{array}{l}
H_{t} \\
Q_{t}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
H_{t} \\
Q_{t}
\end{array}\right]=\left[\begin{array}{c}
A D^{(1)} H+B D^{(1)} Q \\
C\left(\frac{1}{3} H^{3}+\beta H^{2}\right)\left(D^{(3)} H\right)-Q
\end{array}\right]
$$

A, B, and C are all $(N-1) \times(N-1)$ matrix with elements

$$
A_{i j}=\frac{1-\xi_{i}}{L-X(t)}, \quad B_{i j}=\frac{-2}{L-X(t)}, \quad C_{i j}=S\left(\frac{2}{L-X(t)}\right)^{3} .
$$

for all $i, j=1, . ., N-1 . M$ is a singular $2(N-1) \times 2(N-1)$ matrix called mass matrix.
\Rightarrow Solve DAE of index 1 with DASPK or ode15s in MATLAB.

- No fictitious points needed.
- Set Q

$$
Q=X_{t} \frac{1-\xi}{2} \frac{H}{2}\left(1+\frac{\beta}{H+\beta}\right)+\frac{H^{3}}{12}\left(1+\frac{3 \beta}{H+\beta}\right)\left[S\left(\frac{2}{1-X}\right)^{3} H_{\xi \xi \xi}\right]
$$

- When computing Q_{ξ}, use $Q(-1, t)=X_{t} h_{0}+Q_{\text {top }}, Q(1, t)=-Q_{b o t}$.
- Solve the initial value problem at inner nodes

$$
H_{t}=\frac{1-\xi}{1-X} X_{t} H_{\xi}-\left(\frac{2}{1-X}\right) Q_{\xi}
$$

with ode solver ode15s.
\Rightarrow possible connection with penalty method.

Homogenization can be done by shifting variables H and Q such that

$$
\begin{aligned}
& \hat{H}=H-h_{0} \\
& \hat{Q}=Q-(a \xi+b) .
\end{aligned}
$$

It is clear that $\hat{H}(\pm 1, t)=0$. In order to find a and b such that $\hat{Q}(\pm 1, t)=0$, we end up solving 2×2 system of linear equations consisting of $a+b=Q(1, t)$ and $-a+b=Q(-1, t)$.
\Rightarrow Our simulations work with/without homogenization.

Parameters $N=351, \lambda=0.1, \beta=10^{-2}, S=2 \times 10^{-5}, h_{0}=13, h_{e}=0.6$, and initial volume $V_{0}=2.576$. Our simulation is done in MATLAB with ode15s as ODE solver.

Opening phase

fully open (zoom)

The closing phase

$S=2 \times 10^{-5}$ case at various times

Interference fringes.

More results \Rightarrow Braun's talk today !!

- What happen with fictitious point method in the nonlinear case ?
- Adaptive radial basis functions with MOL (Driscoll \& Heryudono (06)).
- Adaptive space-time radial basis functions.
- 2-D simulation.

